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Abstract

We propose Sequential Non‐Ancestor Pruning (SNAP) to identify causal
effects between target variables in a computationally and statistically
efficient way. SNAP can be used for pre‐processing, or as a standalone
sound and complete causal discovery algorithm. Both approaches can
substantially reduce the number of CI tests and the computation time
without compromising the quality of causal effect estimations.

Problem setting

We formalize the problem of estimating causal effects between targets
efficiently, without knowledge of the true causal graph.

Task

Targeted causal effect estimation with an unknown graph
Given a joint distribution p over V and targets T ⊆ V, we consider the task
of estimating in a computationally and statistically efficient way the
interventional distributions P (Ti|do(Tj)), for all pairs Ti, Tj ∈ T.
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Computationally efficient: in terms of CI tests and computation time.
Statistically efficient: optimal in terms of asymptotic variance.

We assume p is observational, Markov, faithful, and causally sufficient.

Insight: Targeted causal effect estimation with an unknown graph may
not require discovering the full causal graph over all variables.

Causal Discovery Adjustment Set

Causal Discovery Adjustment Set

Sequential Non-Ancestor Pruning (SNAP)

In DAGs, the non‐ancestors of the targets T are not needed as part of
the statistically efficient adjustment sets between T [Guo et al. 2023].

We show that appropriate over‐estimations of the possible ancestors of
T suffice to identify statistically efficient adjustment sets between T.

Title

Lemma: Possibly Ancestral Set
Let G(V) be the CPDAG over V. Let V∗ ⊆ V be a possibly ancestral set, i.e.
PossAnG(V∗) ⊆ V∗, and G(V∗) the CPDAG over V∗. Then G(V)|V∗ = G(V∗).
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Thus, causal discovery only on the possible ancestors PossAn(T)
3 enables efficient causal effect estimation between targets T,
3 potentially requires much fewer CI tests,
8 but requires knowledge of PossAn(T).

Sequential Non‐Ancestor Pruning progressively identifies and removes
the non‐ancestors of targets T during the process of causal discovery.

We implement SNAP by modifying the skeleton search of PC:
orient v‐structures after each set of CI tests at a given order i,
identify and remove some definite non‐ancestors of targets T,
continue the search only over the remaining variables.

Algorithm 1 Sequential Non‐Ancestor Pruning ‐ SNAP(k)
Require: Vertices V, Targets T ⊆ V, Maximum order k
1: V̂0 ← V, Û−1 ← fully connected undirected graph over V
2: for i ∈ 0..k do
3: Û i ← induced subgraph of Û i−1 over V̂i ▷ Prune definite non‐ancestors
4: Û i ← Skeleton step at order i
5: if i < 2 then ▷ Orient v‐structures
6: Ĝi ← Orient V‐structures as in PC
7: else
8: Ĝi, Û i ← Orient V‐structures as in RFCI
9: V̂i+1 ← all V ∈ V̂i with a possibly directed path to any T ∈ T in Ĝi

10: Ĝk ← induced subgraph of Ĝk over V̂k+1

11: return V̂k+1, Ĝk

The SNAP(∞) algorithm

SNAP(∞) extends SNAP(k) to a stand‐alone algorithm that
1. runs SNAP(k) until completion, i.e. k = |V| − 2,
2. runs Meek’s rules to identify definite non‐ancestors one last time,
3. outputs the induced subgraph of the full CPDAG over PossAn(T).

Theoretical results

The remaining variables returned by SNAP(k) for any order k are suffi‐
cient to identify the optimal adjustment sets between targets T.

Title

Theorem: SNAP(k) is sound

At each step i = 0, . . . , k of SNAP(k), V̂i+1 contains PossAn(T).
Additionally, V̂i+1 is a possibly ancestral set, i.e. PossAnG(V̂i) ⊆ V̂i+1.
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This means that SNAP(k) with k < |V| can be used to pre‐filter some
non‐ancestors before running standard causal discovery algorithms.

SNAP(∞) returns exactly the CPDAG over the possible ancestors of T.

Title

Theorem: SNAP(∞) is sound and complete

Let Ĝ be the output graph of SNAP(∞) for targets T. Then, SNAP(∞)
returns V̂ = PossAn(T). Additionally, SNAP(∞) is sound and complete
over the possible ancestors T, i.e. Ĝ = G|PossAn(T).
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Experiments

We evaluate SNAP(∞), PC, MARVEL, FGES, MB‐by‐MB and LDECC,
and their combination with SNAP(0).
SNAP(∞) is consistently one of the best in each domain terms of CI
tests and computation time, with a comparable intervention distance.

PC MARVEL LDECC* MB-by-MB* FGES SNAP(∞)

1000 synthetic samples with 4 targets, average degree of 3 and maximum degree of 10.

Pre‐filtering with SNAP(0) greatly improves baselines in most settings.

PC MARVEL LDECC* MB-by-MB* FGES SNAP(∞)

Difference in time for without and with pre‐filtering with SNAP(0).

Original Pre-filtering with SNAP(0)
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1000 linear Gaussian semi‐synthetic samples from the MAGIC‐NIAB network with 4 targets.


