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Motivation: targeted causal effect estimation

» (Goal: Estimate the causal effect between a few target variables efficiently,
when we have a large nhumber of variables

 What do we need to do?
1. We learn the graph using causal discovery

2. We compute the causal effects with the optimal adjustment set
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Motivation: targeted causal effect estimation

* Problems:
* Causal discovery is not scalable for large number of variables

* |t might be wasteful to learn the complete large graph just for a few variables
* Naive solution: only consider the target variables when using causal discovery

 Problem: we can “introduce” latent confounding, and some effects might
become unidentifiable

Causal Discovery




Motivation: targeted causal effect estimation
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 Can we find the causal effects without discovering the whole graph??

Adj ustment Set Causal Effect

wesl) P(T5|do(T')) = P(T>|T,,Vi,Vs)

 Our goal is to discover only the informative parts of the graph



Targeted Causal Effect Estimation with an Unknown Graph

Definition: Given a joint distribution p over variables V and targets T C V, we define
targeted causal effect estimation with an unknown graph as the task of estimating in a
computationally and statistically efficient way the Iinterventional distributions

P(T;|do(T})), for all possible pairs T;, T; € 'T.

 Computationally efficient: number of Cl tests and computation time

o Statistically efficient: we can identify the optimal adjustment set in terms of
asymptotic variance [Henckel et al., 2022]
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 We assume causal sufficiency: no unobserved confounders or selection bias



Related work

* Local Causal Discovery: MB-by-MB [Wang et al., 2014], LDECC [Gupta et al., 2023]

 |dentify the local structure around a target i.e., parents, children etc.

» Causal effect estimation is limited to using the parents of targets: not statistically efficient
* Local Discovery by Partitioning [Maasch et al., 2024]

» Causal relationship between the two targets is known a priori

* Can learn groups of nodes that can be used for more efficient adjustment than parents, but it
might not recover the optimal adjustment set

 Confounder Blanket Learner [Watson and Silva, 2022]
 Recovers the causal order among multiple targets
* Assumes all other variables are non-descendants of the targets: we find this

* Might also not recover the optimal adjustment set



Possible Ancestors Are All You Need

 Guo et al. [2023] show that in causal DAGs, non-ancestors of the targets are
not part of the efficient adjustment sets of the targets

 |[n CPDAGS, we can estimate definite non-ancestors/possible ancestors

» Definite non-ancestors of 7, : {V,} True DAG: Estimated CPDAG:

« Definite ancestors of 75 : {Tl, V1}

» Possible ancestorsof T, : {1, V,, V,}

* For efficient adjustments in a CPDAG we can then remove the definite non-ancestors

 We show that these are also unnecessary for orienting the edges between targets and
their efficient adjustment sets



Possible Ancestors Are All You Need

» We might need the whole CPDAG G to find only the possible ancestors of the
targets, denoted as PossAng(T)

* |f we had a cheap way to overestimate them, that might also be enough to
learn a “useful” CPDAG for targeted causal effect estimation

* Jo this end, we define possibly ancestral sets as sets closed under possible
ancestral relations

Lemma 3.1: Let G be a full CPDAG over variables V. Let V* C V be a possibly ancestral
set of nodes, i.e. PossAng(V*) C V*. Let G(V) |y, be the induced subgraph of G over V*

and let G(V*) be the CPDAG over variables V*. Then we have G(V) |y.. = G(V*).



Possible Ancestors Are All You Need

 Running a causal discovery algorithm on a possibly ancestral set that
iIncludes the possible ancestors of the targets, solves the task:

 Computationally efficient if the possibly ancestral set is small

» As statistically efficient as the full CPDAG
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 Computationally efficient if the possibly ancestral set is small

» As statistically efficient as the full CPDAG
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Possible Ancestors Are All You Need

The challenge is identifying a minimal set containing
the possible ancestors of the targets in a
computationally efficient way

In other words, we want to remove as many definite
non-ancestors of the targets as possible



Sequential Non-Ancestor Pruning (SNAP)

 We introduce SNAP to iteratively identify and remove definite non-ancestors

 SNAP adapts the PC-style skeleton search: at every iteration, it orients
v-structures, and identifies and removes some definite non-ancestors

Underlying causal DAG

.
& @
OEY

Orient v-structures and
identify non-ancestors

Skeleton step

Remove
at order 0

non-ancestors

Skeleton step
at order 1

—

@




Sequential Non-Ancestor Pruning (SNAP)

Algorithm 1 Sequential Non-Ancestor Pruning - SNAP (k)

Require: Vertices V, targets T C V, Maximum order k
1: VO « V, U !« fully connected undirected graph over V
2: for 1 € 0..k do - o
3: U* « induced subgraph of U*~* over V*

4 for X € V', Y € Adj;:(X) do > Learn skeleton step at order i
5 for S C Adj;:(X)\ {Y} s.t. |S|=ido

6 if X 1 Y|S then

7 Delete the edge X — Y from U

8 sepset(X,Y) < sepset(Y,X) «+ S

9 break

10: if 7 < 2 then N > Orient v-structures
11: G* + OrientVstructPC(U", sepset) (Alg. |3)

12: else -

3 G*, sepset + OrientVstructRFCI(U", sepset) (Alg. [4)

4 o Ut skeleton of G" N

|5 Vitl « all V € V' with a possibly directed path to any 7' € T in G* > Prune non-ancestors
6: G* + induced subgraph of G* over VFt!

|7: return Vk+1,ék




Sequential Non-Ancestor Pruning (SNAP)

o Standard v-structure orientations indicate non-ancestry, when all CI tests
restricted to a low order are available [WienoObst and Liskiewicz, 2020]

Skeleton step
at order 0

Example from [Wiendbst and Liskiewicz, 2020]

* This might not hold for PC skeleton search, which performs a subset of Cl tests

* We show that using RFCI-style v-structure orientations instead makes it hold



Sequential Non-Ancestor Pruning (SNAP)

» Reminder: V* C V is a possibly ancestral set of nodes, i.e. PossAn (V*) C V*

 We show that at every iteration, the remaining variables are a possibly ancestral set
containing the targets, and thus their possible ancestors

Theorem 3.1: Given oracle conditional independence tests, at each step i =0,...,k of
SNAP(), VT contains PossAn(T). Additionally, V™! is a possibly ancestral set, i.e.
PossAn(V") C Vit

 As we have shown before, this set is statistically efficient for the targeted causal
effect estimation



Sequential Non-Ancestor Pruning (SNAP)

» Pre-filtering with SNAP(k): stop at any iteration k and run standard causal
discovery algorithms on the remaining variables

with SNAP (%)

@ @ _ @ Prefiltering
_1 | N

* Considering fewer and fewer variables, as the size of the conditioning set
INncreases, leads to significantly fewer higher order tests in practice



Sequential Non-Ancestor Pruning (SNAP)

« SNAP(c0) extends SNAP(k) to a stand-alone causal discovery algorithm

« SNAP(0) runs SNAP(k) until completion, i.e. k = | V| — 2, and then runs
Meek’s orientation rules to identify definite non-ancestors one last time

Theorem 3.2: Given oracle conditional independence tests, let G be the output graph of
SNAP(co) for targets T'. Then, SNAP(oco) returns V = PossAn(T). Additionally, SNAP(co) is
sound and complete over the possible ancestors T, i.e.

G=G ‘PossAn(T)

 We show that worst-case complexity of SNAP(co) matches PC if the
maximum degree of the graph is > 2



| Non-Ancestor Pruning (SNAP)

Sequentia

Phase: Skeleton search

Order: 0

SNAP(o0)

Phase: Skeleton search
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Sequential Non-Ancestor Pruning (SNAP)

Phase: Skeleton search

Order: 0
Cl tests: 190
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Phase: Skeleton search
Order: 0

Cl tests: 190
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Sequential Non-Ancestor Pruning (SNAP)

PC

SNAP ()

Phase: Orient v-structures Phase: Skeleton search
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Sequential Non-Ancestor Pruning (SNAP)

PC

Phase: Get non-ancestors SNAP(X) Phase: Skeleton search
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SNAP(~)

Phase: Skeleton search

Order: 1
Cl tests: 195

Sequential Non-Ancestor Pruning (SNAP)

PC

Phase: Skeleton search
Order: 1

Cl tests: 312
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Sequential Non-Ancestor Pruning (SNAP)

Phase.: Get non-ancestors SNAP(X) gh(ajse‘: %keleton search PC
glrcti:tszl 425 e Cl tests: 863
: \ .
‘4‘ L
e A o </me
, N \ ‘» =
\l,~\ v ‘\4 fr (
7 T S Sz
o NS L7
® S A7 0
® =

\




Sequential Non-Ancestor Pruning (SNAP)

SNAP(~0)

Phase: Get non-ancestors Phase: Skeleton search

Order: 2 Order: 2
Cl tests: 536 Cl tests: 1362
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Sequential Non-Ancestor Pruning (SNAP)

Phase: Orient Meek rules SNAP('X) Phase: Skeleton search PC
Order: 5 Order: 4
Cl tests: 565 Cl tests: 11973 : i) 2
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Sequential Non-Ancestor Pruning (SNAP)

Phase: Get non-ancestors SNAP('X) Phase: Skeleton search PC
Order: 5 Order: 4
Cl| tests: 565 (5). Cl tests: 12281 6 2
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Sequential Non-Ancestor Pruning (SNAP)

Phase: Adjustment set SNAP('X) Phase: Adjustment set PC
Order: 5 Order: 6
Cl tests: 565 i Cl tests: 12329 6 2
7 3
8
11
12
13

14 16

15



Experiments (synthetic graphs)

« SNAP(0) is one of the best methods across domains in terms of number
of Cl tests and computation time, with a comparable intervention distance
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Experiments (synthetic graphs)

« SNAP(0) is one of the best methods across domains in terms of number
of Cl tests and computation time, with a comparable intervention distance

—a— PC MARVEL —+— |LDECC* ——  MB-by-MB* —v— FGES SNAP(0)

d-separation tests Fisher-Z tests KCI tests x° tests
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4 targets, expected degree of 3, maximum degree of 10 and 1000 data points



Experiments (synthetic graphs)

 Pre-filtering with SNAP(0) improves the baselines in most settings
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Experiments (synthetic graphs)
 Pre-filtering with SNAP(k > 0) further reduces Cl tests on denser graphs

x 100

HEE PC
SNAP

B

2

(N

Number of Cl tests

1
N 1
0 1 2 3

Filter order k

o0

d-separation Cl tests, 50 nodes and expected degree of 5



Experiments (MAGIC-NIAB)

 Pre-filtering with SNAP(0) consistently improves most baselines

CI tests Time
PC 12807 (+£2086) 79.3 (£24.7)
PC-SNAP(0) 955 (+10) 0.5 (£0.1)
MARVEL 8873 (__3056) 27. (__9.4)
MARVEL-SNAP(0) 960 (£5) 0.6 (£0.1)
LDECC* 18142 (£2608) 19.2 (4+4.0)
LDECC*-SNAP(0) 981 (£23) 0.8 (£0.1)
MB-by-MB* 11464 (£1995) 25.7 (£4.7)
MB-by-MB*-SNAP(0) 072 (£17) 0.7 (+0.2)
FGES - 0.7 (£0.1)
FGES-SNAP(0) - 0.4 (£0.1)
SNAP(c0) 955 (::10) 0.6 (::O.Z)

4 identifiable targets and 1000 linear Gaussian data points



Conclusions and future work

* We have shown how to estimate the causal effects between a few targets variables in large
graph in a computationally and statistically efficient way

 The SNAP framework discovers the relevant portion of the CPDAG for estimating these effects

« SNAP(k) can be used as a pre-processing step for other discovery algorithms, making them
faster

« SNAP(00) is a stand-alone sound and complete discovery algorithm
e Future work:
 Handle unobserved confounders

 Add background knowledge, e.g. coming from an LLM, including when it’'s imperfect



Questions?

Paper: arxiv.org/abs/2502.07857
Project page: matyasch.github.io/snap



http://arxiv.org/abs/2502.07857
http://matyasch.github.io/snap
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Where standard v-structure orientations fail

» Atorder 3, we get A < B, eventhough A — B in the graph
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RFCI v-structure orientation rules

Algorithm 4 OrientVstructRFCI: Orienting v-structures in the RFCI algorithm [Colombo et al., 2012]

Require: Skeleton U , separating sets sepset
1: M+ {(X,Z,Y)suchthat X —Z -Y in E and X ¢ Adj;(Y)}

2:
3:

10:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

29:
26:
27:
28:
29:

L+ {}
repeat

X,Z,Y < choose an unshielded triple from M
if Z ¢ sepset(X,Y) then

if X [ Z|
L+ L
else

sepset(X,Y) and Z J Y|sepset(X,Y) then
U{(X,Y,Z2)} > Add to legitimate v-structures

for Ve {X,Y} do
if V I Z|sepset(X,Y) then

S « sepset(X,Y) > Find minimal separating set
done < False
while not done do
done < True
for S €S do
if VI Z|S\ {S} then
S+ S\ {S}
done < False
break
sepset(V, Z) < sepset(Z,V) < S
M «+ MU all triangles (min(V, Z), -, max(V, Z)) in U > Update new unshielded triples.
M < M\ all triples in M of the form (V, Z, ), (Z,V,-),(-,V,Z) and (-, Z,V)
L « L\ all triples in L of the form (V, Z,-), (Z,V,-),(-,V,Z) and (-, Z,V)
Delete the edge V — Z from U

until M is empty

G+U

for (X,Z,Y) € L do A
Orient X #%* Z %% Y as X% Z <*Y in GG

return G , sepset




Computational complexity

We did not find a formal complexity analysis of the RFCI orientation rules in the literature, so we show in
Lemma @ that its worst-case complexity in terms of CI tests is at most O(|V|*).

Lemma 3.2. The worst-case complexity of the RFCI orientation rules (Algorithm M) in terms of CI tests
performed is at most O(|V|*) CI tests, where |V| is the number of nodes.

From Lemma 3.2 and the classical result on PC-style skeleton search by Spirtes et al. [2000], it follows that the
worst-case computational complexity of SNAP(oc0) is at most

O(|V |2 + V%),

Corollary 3.2. For graphs with mazximum degree d,,q. > 2, the worst-case computational complexity of SNAP (c0)
in terms of CI tests is O(|V|%maxt2) " which matches the complexity of PC.



Example where SNAP is slower

X- . X,
N
Xo — X4
/ N\
Xe > X4

Figure 6: An example graph with targets T = {X7, X5} on which SNAP(oc0) performs more CI tests than PC.



Rough approximation of expected ancestors

We get the expected rank of the highest ranking target by taking
the expectation over all possible highest ranks ¢ = |T|..|V| as follows:

M

. 1 1 — 1
M = ] 1
v 2 Z(\T\ - 1> )
'T|/ i=|T]
We can now overestimate the size of the possible ancestors of T by simply considering it to be M.
Nodes 50 100 150 200 250 300
M 19.64(£7.16) 23.95(410.85) 26.88(£13.60) 29.49(£18.66) 28.18(£15.50) 33.78(17.97)
M 40.8 80.8 120.8 160.8 200.8 240.8

Table 2: Estimates for the expected number of possible ancestors empirically (M ) over 100 seeds with various
m}mbers of nodes, nt = 4,d = 3 and d,x = 10 in the first row, and by using the Equation 1 in the second row

(M).



