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Motivation: targeted causal effect estimation
• Goal: Estimate the causal effect between a few target variables efficiently, 

when we have a large number of variables 

• What do we need to do?


1. We learn the graph using causal discovery


2. We compute the causal effects with the optimal adjustment set 



Motivation: targeted causal effect estimation
• Problems: 


• Causal discovery is not scalable for large number of variables


• It might be wasteful to learn the complete large graph just for a few variables


• Naive solution: only consider the target variables when using causal discovery


• Problem: we can “introduce” latent confounding, and some effects might 
become unidentifiable



• Can we find the causal effects without discovering the whole graph? 
 
 
 
 
 

• Our goal is to discover only the informative parts of the graph

Motivation: targeted causal effect estimation



Targeted Causal Effect Estimation with an Unknown Graph

Definition: Given a joint distribution  over variables  and targets , we define 
targeted causal effect estimation with an unknown graph as the task of estimating in a 
computationally and statistically efficient way the interventional distributions 

, for all possible pairs .

p V T ⊆ V

P(Ti |do(Tj)) Ti, Tj ∈ T

• Computationally efficient: number of CI tests and computation time


• Statistically efficient: we can identify the optimal adjustment set in terms of 
asymptotic variance [Henckel et al., 2022] 
 
 
 

• We assume causal sufficiency: no unobserved confounders or selection bias



Related work
• Local Causal Discovery: MB-by-MB [Wang et al., 2014], LDECC [Gupta et al., 2023]


• Identify the local structure around a target i.e., parents, children etc.


• Causal effect estimation is limited to using the parents of targets: not statistically efficient


• Local Discovery by Partitioning [Maasch et al., 2024]


• Causal relationship between the two targets is known a priori


• Can learn groups of nodes that can be used for more efficient adjustment than parents, but it 
might not recover the optimal adjustment set


• Confounder Blanket Learner [Watson and Silva, 2022]


• Recovers the causal order among multiple targets


• Assumes all other variables are non-descendants of the targets: we find this


• Might also not recover the optimal adjustment set



Possible Ancestors Are All You Need
• Guo et al. [2023] show that in causal DAGs, non-ancestors of the targets are 

not part of the efficient adjustment sets of the targets


• In CPDAGs, we can estimate definite non-ancestors/possible ancestors 

• Definite non-ancestors of 


• Definite ancestors of 


• Possible ancestors of  

• For efficient adjustments in a CPDAG we can then remove the definite non-ancestors 

• We show that these are also unnecessary for orienting the edges between targets and  
their efficient adjustment sets

T2 : {V3}

T2 : {T1, V1}

T2 : {T1, V1, V2}



Possible Ancestors Are All You Need

• We might need the whole CPDAG  to find only the possible ancestors of the 
targets, denoted as 


• If we had a cheap way to overestimate them, that might also be enough to 
learn a “useful” CPDAG for targeted causal effect estimation


• To this end, we define possibly ancestral sets as sets closed under possible 
ancestral relations

G
PossAnG(T)

Lemma 3.1: Let  be a full CPDAG over variables . Let  be a possibly ancestral 
set of nodes, i.e. . Let  be the induced subgraph of  over  
and let  be the CPDAG over variables . Then we have .

G V V* ⊆ V
PossAnG(V*) ⊆ V* G(V) |V* G V*

G(V*) V* G(V) |V* = G(V*)



Possible Ancestors Are All You Need
• Running a causal discovery algorithm on a possibly ancestral set that 

includes the possible ancestors of the targets, solves the task:


• Computationally efficient if the possibly ancestral set is small


• As statistically efficient as the full CPDAG
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Possible Ancestors Are All You Need

The challenge is identifying a minimal set containing 
the possible ancestors of the targets in a 

computationally efficient way


In other words, we want to remove as many definite 
non-ancestors of the targets as possible



Sequential Non-Ancestor Pruning (SNAP)
• We introduce SNAP to iteratively identify and remove definite non-ancestors


• SNAP adapts the PC-style skeleton search: at every iteration, it orients 
v-structures, and identifies and removes some definite non-ancestors



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)
• Standard v-structure orientations indicate non-ancestry, when all CI tests 

restricted to a low order are available [Wienöbst and Liskiewicz, 2020] 
 
 
 
 
 
 
 
 
 

• This might not hold for PC skeleton search, which performs a subset of CI tests


• We show that using RFCI-style v-structure orientations instead makes it hold

Example from [Wienöbst and Liskiewicz, 2020]



Sequential Non-Ancestor Pruning (SNAP)

Theorem 3.1: Given oracle conditional independence tests, at each step  of 
SNAP( ),  contains . Additionally,  is a possibly ancestral set, i.e. 

.

i = 0,…, k
k V̂i+1 PossAn(T) V̂i+1

PossAnG(V̂i) ⊆ V̂i+1

• Reminder:   is a possibly ancestral set of nodes, i.e. 


• We show that at every iteration, the remaining variables are a possibly ancestral set 
containing the targets, and thus their possible ancestors

V* ⊆ V PossAnG(V*) ⊆ V*

• As we have shown before, this set is statistically efficient for the targeted causal 
effect estimation



Sequential Non-Ancestor Pruning (SNAP)

• Pre-filtering with SNAP( ): stop at any iteration  and run standard causal 
discovery algorithms on the remaining variables 
 
 
 
 

• Considering fewer and fewer variables, as the size of the conditioning set 
increases, leads to significantly fewer higher order tests in practice

k k



Sequential Non-Ancestor Pruning (SNAP)
• SNAP( ) extends SNAP( ) to a stand-alone causal discovery algorithm


• SNAP( ) runs SNAP( ) until completion, i.e. , and then runs 
Meek’s orientation rules to identify definite non-ancestors one last time 
 
 
 
 
 

• We show that worst-case complexity of SNAP( ) matches PC if the 
maximum degree of the graph is

∞ k

∞ k k = |V | − 2

∞
≥ 2

Theorem 3.2: Given oracle conditional independence tests, let  be the output graph of 
SNAP( ) for targets . Then, SNAP( ) returns . Additionally, SNAP( ) is 
sound and complete over the possible ancestors , i.e.


Ĝ
∞ T ∞ V̂ = PossAn(T) ∞

T

Ĝ = G |PossAn(T)

.



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Sequential Non-Ancestor Pruning (SNAP)



Experiments (synthetic graphs)
• SNAP( ) is one of the best methods across domains in terms of number 

of CI tests and computation time, with a comparable intervention distance
∞

4 targets, expected degree of 3, maximum degree of 10 and 1000 data points
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Experiments (synthetic graphs)
• Pre-filtering with SNAP( ) improves the baselines in most settings0

4 targets, expected degree of 3, maximum degree of 10 and 1000 data points



Experiments (synthetic graphs)
• Pre-filtering with SNAP( ) further reduces CI tests on denser graphsk > 0

d-separation CI tests, 50 nodes and expected degree of 5



• Pre-filtering with SNAP( ) consistently improves most baselines0
Experiments (MAGIC-NIAB)

4 identifiable targets and 1000 linear Gaussian data points



Conclusions and future work
• We have shown how to estimate the causal effects between a few targets variables in large 

graph in a computationally and statistically efficient way


• The SNAP framework discovers the relevant portion of the CPDAG for estimating these effects


• SNAP( ) can be used as a pre-processing step for other discovery algorithms, making them 
faster


• SNAP( ) is a stand-alone sound and complete discovery algorithm


• Future work:


• Handle unobserved confounders 


• Add background knowledge, e.g. coming from an LLM, including when it’s imperfect

k

∞



Questions?
Paper: arxiv.org/abs/2502.07857  
Project page: matyasch.github.io/snap

http://arxiv.org/abs/2502.07857
http://matyasch.github.io/snap
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Where standard v-structure orientations fail
• At order 3, we get , even though  in the graphA ↔ B A → B



RFCI v-structure orientation rules



Computational complexity



Example where SNAP is slower



Rough approximation of expected ancestors


